Numerical Methods and Programming Assignment-1

- Problem 1: Machine precision is defined as the largest number ϵ such that $1+\epsilon=1$. Write a C program to calculate ϵ. Calculate it for both 'float' and 'double' data types.
- Problem 2: a) Write a C program to evaluate the function e^{-x} at $\mathrm{x}=0.5$ by summing the series:

$$
e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots
$$

Sum the series until $\left|\frac{\text { term }}{\text { sum }}\right|<10^{-8}$.
b) Calculate the relative error by comparing with the exact value obtained from in-built library function 'exp'.
c) Plot (log-log) relative error versus number of terms kept in the series.

- Problem 3: We know that roots of a quadratic equation of the form $a x^{2}+$ $b x+c=0$ are $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Write a C program to evaluate the roots of such a quadratic equation with

$$
a=1, b=3000.001, c=3
$$

Actual roots are $x_{1}=-0.001$ and $x_{2}=-3000$. Use single precision ('float') to represent real numbers.

- Problem 4: The $n^{t h}$ power of the number $\phi=\frac{\sqrt{5}-1}{2} \approx 0.61803398$ obeys a recursion relation

$$
\phi^{n+1}=\phi^{n-1}-\phi^{n}
$$

Starting with $\phi^{0}=1$ and $\phi^{1}=0.61803398$ evaluate the values upto $n=$ 20 using the above recursion relation. Compare your results with ϕ^{n} evaluated using the in-built 'pow' function. Plot the relative error as a function of n.

- Problem 5: If divided differences are defined as

$$
\begin{aligned}
f\left(x, x_{0}\right) & =\frac{y-y_{0}}{x-x_{0}} \\
f\left(x, x_{0}, x_{1}\right) & =\frac{f\left(x, x_{0}\right)-f\left(x_{0}, x_{1}\right)}{x-x_{1}} \\
f\left(x, x_{0}, x_{1}, x_{2}\right) & =\frac{f\left(x, x_{0}, x_{1}\right)-f\left(x_{0}, x_{1}, x_{2}\right)}{x-x_{2}}
\end{aligned}
$$

a) prove that divided differences has the following symmetries with respect to exchange of arguments

$$
\begin{aligned}
f\left(x_{1}, x_{0}\right) & =f\left(x_{0}, x_{1}\right) \\
f\left(x_{2}, x_{1}, x_{0}\right) & =f\left(x_{2}, x_{0}, x_{1}\right) \\
f\left(x_{2}, x_{1}, x_{0}\right) & =f\left(x_{1}, x_{2}, x_{0}\right) \\
f\left(x_{3}, x_{2}, x_{1}, x_{0}\right) & =f\left(x_{2}, x_{3}, x_{1}, x_{0}\right)
\end{aligned}
$$

b) show that y can be written as

$$
\begin{aligned}
y=y_{0} & +\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

further by mathematical induction you can prove that Newton's general interpolation formula with divided differences is

$$
\begin{align*}
y=y_{0} & +\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \tag{1}\\
& +\ldots \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) f\left(x_{0}, x_{1}, x_{2} \ldots x_{n-1}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) f\left(x_{0}, x_{1}, x_{2} \ldots x_{n}\right)
\end{align*}
$$

- Problem 6: Write a C program to perform Newton's interpolation (Eq.1) and find $\log _{10} 323.5$ using the following table.

x	$\log _{10} x$
321.0	2.50651
322.0	2.50893
324.2	2.51081
325.0	2.51188

- Problem 7: If $y=P(x)$ is a polynomial of $n^{\text {th }}$ degree which takes the values $y_{0}, y_{1}, y_{2}, \ldots y_{n}$ when x has the values $x_{0}, x_{1}, x_{2}, \ldots x_{n}$ respectively and $(n+1)^{\text {th }}$ divided differences of this polynomial is given as

$$
\begin{aligned}
f\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{y}{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)} \\
& +\frac{y_{0}}{\left(x_{0}-x\right)\left(x_{0}-x_{1}\right) \ldots\left(x_{0}-x_{n}\right)} \\
& +\frac{y_{1}}{\left(x_{1}-x\right)\left(x_{1}-x_{0}\right) \ldots\left(x_{1}-x_{n}\right)} \\
& +\ldots \\
& +\frac{y_{n}}{\left(x_{n}-x\right)\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{1}-x_{n-1}\right)}
\end{aligned}
$$

show that y can be written as

$$
\begin{align*}
y & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} y_{0} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right) \ldots\left(x-x_{n}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right) \ldots\left(x_{2}-x_{n}\right)} y_{2} \tag{2}\\
& +\ldots \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right)\left(x_{n}-x_{3}\right) \ldots\left(x_{n}-x_{n-1}\right)} y_{n}
\end{align*}
$$

which is Lagrange's interpolation formula.
Hint: You can use the fact that $n^{\text {th }}$ divided difference of a polynomial of degree n is constant. Hence $(n+1)^{\text {th }}$ divided difference of a polynomial of degree n is zero.

- Problem 8: a) Implement a C function to perform Gauss Elimination b) Use it to solve

$$
\begin{aligned}
& 0.0003 x_{1}+3.0000 x_{2}=2.0001 \\
& 1.0000 x_{1}+1.0000 x_{2}=1.0000
\end{aligned}
$$

Use 'float' datatype for all real numbers. The exact solution is $x_{1}=$ $1 / 3, x_{2}=2 / 3$
c) Solve the above problem with pivotting.

- Problem 9: a) Extend the Gauss Elimination function to calculate LU decomposition of a matrix.
b) Using LU decomposition, solve the system of equations:

$$
\begin{gathered}
7 x_{1}+2 x_{2}-3 x_{3}=-12 \\
2 x_{1}+5 x_{2}-3 x_{3}=-20 \\
x_{1}-x_{2}-6 x_{3}=-26
\end{gathered}
$$

- Problem 10: a) Solve the following set of equations by LU decomposition without pivoting

$$
\begin{gathered}
x_{1}+7 x_{2}-4 x_{3}=-51 \\
4 x_{1}-4 x_{2}+9 x_{3}=62 \\
12 x_{1}-x_{2}+3 x_{3}=8
\end{gathered}
$$

b) Determine the matrix inverse. Check whether $[A][A]^{-1}=[I]$

